1
|
-
MARIA ZILDA OLIVEIRA
-
AUMENTO NA PERFORMANCE DE CÉLULAS SOLARES PEROVSKITAS A PARTIR DE RESSONÂNCIA PLASMÔNICA DE NANOPARTÍCULAS BIMETÁLICAS Ag-Au
-
Orientador : GIOVANNA MACHADO
-
MEMBROS DA BANCA :
-
GIOVANNA MACHADO
-
TIAGO FELIPE DE ABREU SANTOS
-
MARCO ANTONIO SCHIAVON
-
Data: 13/04/2022
-
-
Mostrar Resumo
-
As explorações espaciais se mostram muito importantes para o desenvolvimento da ciência, levando à obtenção de tecnologias indispensáveis à sociedade. Um exemplo é a pesquisa e desenvolvimento de sondas espaciais, telescópios, veículos geológicos e satélites, que possibilitam o acesso à navegação, internet, telefone, sinal de televisão, estudos climáticos, comunicações, entre outros. Juntamente com os avanços obtidos, surgem questões técnicas que demandam constante aperfeiçoamento e inovação, como o fornecimento de energia para a estação espacial. Para futuras missões é crucial aumentar a potência gerada por unidade de área. Fazendo com que a operação de naves movidas a energia solar seja possível a distâncias ainda maiores que as atuais, bem como mais afastadas do sol. Nesse sentido, o desenvolvimento de novos materiais eficientes e baratos que possam ser aplicados em células solares é de interesse mundial. Dentre os dispositivos que promovem a conversão da energia solar em energia elétrica, as células solares de perovskitas são uma das tecnologias mais promissoras atualmente. Segundo dados do National Renewable Energy Laboratory, as perovskitas possuem eficiência certificada de 25,5%. No entanto, além do objetivo de aumentar ainda mais a eficiência de conversão de energia, a viabilização de aplicação em larga escala, dessa tecnologia, encontra-se desafiada por limitações como instabilidade do material e tempo de vida do dispositivo. Perovskitas inorgânicas, com substituição de cátions orgânicos por outros cátions, como o césio, têm recebido destaque na comunidade cientifica, devido a maiores estabilidades, sendo, no entanto, ainda necessário tratar desse e outros pontos referentes à tecnologia. Uma estratégia para aperfeiçoar os dispositivos, levando à possibilidade de maior geração de fotoelétrons, menor resistência entre camadas e consequente aumento de eficiência, está na incorporação de diferentes materiais, como nanopartículas bimetálicas. Nesse sentido, essa dissertação tem como objetivo a obtenção, caracterização e otimização de células solares de perovskitas inorgânicas de CsPbBr 3 , bem como a incorporação de nanopartículas bimetálicas de Ag-Au (NPB Ag-Au) nos filmes de perovskitas preparados. O intuito é desenvolver um sistema de fabricação e caracterização eletroquímica confiável e reprodutível para os dispositivos fotovoltaicos, além de avaliar o efeito plasmônico das nanopartículas bimetálicas nos parâmetros de caracterização da célula solar, como fator de preenchimento, potencial de circuito aberto, eficiência e densidade de corrente, utilizando um contraeletrodo de carbono. Foi estudado o efeito do tempo de imersão dos substratos de TiO 2 em FTO com camada de PbBr 2 , em solução de brometo de césio, para a formação dos filmes de perovskita CsPbBr 3 . Com o tempo de 20 minutos foi possível preparar células solares com eficiência (ɳ) de até 4,6 %, com densidade de corrente (JSC) de 10,4 mA/cm 2 , potencial de circuito aberto (VOC) de 1,06 V e fator de forma (FF) de 42%. Observou-se pela análise estatística dos dispositivos que os filmes fabricados com 20 minutos de imersão apresentaram-se reprodutíveis e com interessantes respostas eletroquímicas, bem como de absorção e de cristalinidade, apresentando-se como interessantes dispositivos para o estudo de efeito plasmônico, pela inserção das nanopartículas bimetálicas de Ag-Au. Neste trabalho, pela primeira vez, foi relatado o uso de nanopartículas bimetálicas de Ag-Au, consideravelmente monodispersas e altamente estáveis, em células solares de perovskita, usando carbono como contra-eletrodo. Nanopartículas bimetálicas Ag-Au foram sintetizadas com sucesso, apresentando diâmetros da ordem de 19,9 nm e banda de absorção em torno de 496 nm. As nanopartículas foram adicionadas na parte traseira das células solares de perovskita e se mostraram eficazes, gerando um aumento de fotocorrente de cerca de 49%, quando comparados aos dispositivos padrões, sem adição das nanopartículas. Foi possível preparar células solares com eficiência (ɳ) da ordem de 4,1%, com densidade de corrente (JSC) de 15,5 mA/cm 2 , potencial de circuito aberto (VOC) de 0,89 V e fator de preenchimento (FF) de 30%, com a adição das nanopartículas bimetálicas. O fenômeno de ressonância plasmônica de superfície apresentou-se como uma importante estratégia para aumentar a densidade de corrente gerada nos dispositivos fotovoltaicos. Além disso, a adição das nanopartículas proporcionou melhorias nas propriedades ópticas e morfológicas dos filmes de perovskita. Portanto, acredita-se que a deposição de NPB Ag-Au na camada de perovskita CsPbBr3, posicionada na interface perovskita/contra eletrodo de carbono, pode ser utilizada como uma ferramenta eficaz no aprimoramento do Jsc e, com a possibilidade de otimização dos demais parâmetros, poderia possibilitar a melhoria total do desempenho em dispositivos fotovoltaicos.
-
Mostrar Abstract
-
As explorações espaciais se mostram muito importantes para o desenvolvimento da ciência, levando à obtenção de tecnologias indispensáveis à sociedade. Um exemplo é a pesquisa e desenvolvimento de sondas espaciais, telescópios, veículos geológicos e satélites, que possibilitam o acesso à navegação, internet, telefone, sinal de televisão, estudos climáticos, comunicações, entre outros. Juntamente com os avanços obtidos, surgem questões técnicas que demandam constante aperfeiçoamento e inovação, como o fornecimento de energia para a estação espacial. Para futuras missões é crucial aumentar a potência gerada por unidade de área. Fazendo com que a operação de naves movidas à energia solar seja possível a distâncias ainda maiores que as atuais, bem como mais afastadas do sol. Nesse sentido, o desenvolvimento de novos materiais eficientes e baratos que possam ser aplicados em células solares é de interesse mundial.Dentre os dispositivos que promovem a conversão da energia solar em energia elétrica, as células solares de perovskitas são uma das tecnologias mais promissoras atualmente. Segundo dados do National Renewable Energy Laboratory, as perovskitas possuem eficiência certificada de 25,5%.No entanto, além do objetivo de aumentar ainda mais a eficiência de conversão de energia, a viabilização de aplicação em larga escala, dessa tecnologia, encontra-se desafiada por limitações como instabilidade do material e tempo de vida do dispositivo. Perovskitas inorgânicas, com substituição de cátions orgânicos por outros cátions, como o césio, têm recebido destaque na comunidade cientifica, devido a maiores estabilidades, sendo, no entanto, ainda necessário tratar desse e outros pontos referentes à tecnologia. Uma estratégia para aperfeiçoar os dispositivos, levando à possibilidade de maior geração de fotoelétrons, menor resistência entre camadas e consequente aumento de eficiência, está na incorporação de diferentes materiais, como nanopartículas bimetálicas. Nesse sentido, essa dissertação tem como objetivo a obtenção, caracterização e otimização de células solares de perovskitas inorgânicas de CsPbBr3, para seguir então para a incorporação de nanopartículas bimetálicas de Ag-Au. O intuito é desenvolver um sistema de fabricação e caracterização eletroquímica confiável e reprodutível para os dispositivos fotovoltaicos, além de avaliar o efeito plasmônico das nanopartículas bimetálicas nos parâmetros de caracterização da célula solar, como fator de preenchimento, potencial de circuito aberto, eficiência e densidade de corrente, utilizando um contraeletrodo de carbono. Foi estudado o efeito do tempo, de 10 a 50 minutos, de imersão dos substratos de TiO2 em FTO, com camada de PbBr2, em solução de brometo de césio, para a formação dos filmes de perovskita CsPbBr3. Com o tempo de 20 minutos foi possível preparar células solares com eficiência de até 4,6 %, com densidade de corrente de 10,4 mA/cm2, Voc de 1,06 V e FF de 42%. Observou-se pela análise estatística dos dispositivos que os filmes fabricados com 20 minutos de imersão apresentaram-se reprodutíveis e com interessantes respostas eletroquímicas, bem como de absorção e de cristalinidade, apresentando-se como interessantes dispositivos para a sequência do trabalho e, portanto, para o estudo de efeito plasmônico, pela inserção das nanopartículas bimetálicas de Ag-Au.
|
|
2
|
-
JULIO CESAR FERNANDES FONSECA
-
Filme de Nanocompósito de Polipirrol dopado com Vermelho do Congo e Nanopartículas de ouro como Contra-eletrodo em Células Solares Sensibilizadas com Corante
-
Orientador : GIOVANNA MACHADO
-
MEMBROS DA BANCA :
-
GIOVANNA MACHADO
-
TIAGO FELIPE DE ABREU SANTOS
-
ARMANDO JUAN NAVARRO VAZQUEZ
-
CALINK INDIARA DO LIVRAMENTO DOS SANTOS
-
Data: 14/04/2022
-
-
Mostrar Resumo
-
A fonte de energia mais estável e disponível é a energia solar que pode ser transformada em energia elétrica através da fabricação de painéis solares também chamados de células solares ou ainda células fotovoltaicas. Dentre as células solares desenvolvidas e exploras, as células solares sensibilizadas por corantes (DSSCs) emergiram como uma promessa para o futuro. Porém a utilização de alguns componentes para sua fabricação dificulta que tal tecnologia se torne cada vez mais acessível, como a volatilidade do eletrólito e o custo dos componentes da célula, como por exemplo o contra-eletrodo de platina (Pt). A Pt é um metal nobre que a cada dia se torna mais escarço e apresenta custo elevado. Dessa forma, um crescente interesse vem sendo dado ao desenvolvimento de contra-eletrodos livres de platina, que apresentem baixa resistência à transferência de carga, baixo custo e que sejam de fácil fabricação. Os materiais relatados como potenciais substitutos de Pt são compostos de polímeros condutores. Neste trabalho, foi estudado pela primeira vez a síntese eletroquimicamente in situ de filmes de nanocompósito de polipirrol (PPI) dopado com vermelho do congo (VC) e nanopartículas de ouro (NPAu). Os materiais foram caracterizados e aplicados como contra-eletrodos (CE) em DSSCs. Os filmes de nanocompósitos foram sintetizados em temperatura ambiente e caracterizados através de análises ópticas, morfológicas, estruturais e eletroquímicas utilizando espectroscopia de absorção UV-VIS, espectroscopia Raman, microscopia eletrônica de varredura (MEV), Microscopia eletrônica de transmissão (TEM) e voltametria cíclica (VC). Os dispositivos de DSSCs foram avaliados por medidas de curvas de corrente versus potencial. Os resultados mostram que a presença de NPAu à matrix do PPI-VC, resulta em uma melhor performance dos dispositivos de DSSCs.
-
Mostrar Abstract
-
A fonte de energia mais estável e disponível é a energia solar que pode ser transformada em energia elétrica através da fabricação de painéis solares também chamados de células solares ou ainda células fotovoltaicas. Dentre as células solares desenvolvidas e exploras, as células solares sensibilizadas por corantes (DSSCs) emergiram como uma promessa para o futuro. Porém a utilização de alguns componentes para sua fabricação dificulta que tal tecnologia se torne cada vez mais acessível, como a volatilidade do eletrólito e o custo dos componentes da célula, como por exemplo o contra-eletrodo de platina (Pt). A Pt é um metal nobre que a cada dia se torna mais escarço e apresenta custo elevado. Dessa forma, um crescente interesse vem sendo dado ao desenvolvimento de contra-eletrodos livres de platina, que apresentem baixa resistência à transferência de carga, baixo custo e que sejam de fácil fabricação. Os materiais relatados como potenciais substitutos de Pt são compostos de polímeros condutores. Neste trabalho, foi estudado pela primeira vez a síntese eletroquimicamente in situ de filmes de nanocompósito de polipirrol (PPI) dopado com vermelho do congo (VC) e nanopartículas de ouro (NPAu). Os materiais foram caracterizados e aplicados como contra-eletrodos (CE) em DSSCs. Os filmes de nanocompósitos foram sintetizados em temperatura ambiente e caracterizados através de análises ópticas, morfológicas, estruturais e eletroquímicas utilizando espectroscopia de absorção UV-VIS, espectroscopia Raman, microscopia eletrônica de varredura (MEV), Microscopia eletrônica de transmissão (TEM) e voltametria cíclica (VC). Os dispositivos de DSSCs foram avaliados por medidas de curvas de corrente versus potencial. Os resultados mostram que a presença de NPAu à matrix do PPI-VC, resulta em uma melhor performance dos dispositivos de DSSCs.
|
|