Classificação Não Supervisionada no Contexto de Tamanho e Forma
Marcos; Teste de hipóteses; K-médias; Boosting; Bagging
A dissertação tem como objetivo propor métodos de classificação não supervisionados no contexto de tamanho e forma considerando imagens bidimensionais (formas planas). Apresentamos novos métodos de classificação baseados em testes de hipóteses e no algoritmo K-médias. Também propomos combinações de algoritmos usando métodos de ensemble: Bagging e Boosting.
Para avaliar os métodos propostos foram analisados dados simulados e dados reais. Com os dados simulados, três cenários foram usados para avaliar o desempenho dos métodos propostos. Os cenários correspondem a grupos de alta, média e baixa variabilidade. Os resultados numéricos indicaram que para os conjuntos de dados, quando os tamanhos dos centróides se diferenciam, o desempenho dos algoritmos melhora. Além disso, os algoritmos baseados em Boosting e Bagging superam suas versões básicas. Três conjuntos de dados do mundo real são considerados: dados de referência de crânios de grandes macacos; dados de vértebras de camundongos e imagens de ressonância magnética de pessoas com esquizofrenia. Esses conjuntos de dados têm configurações diferentes, como vários pontos de referência e variabilidade. Os métodos K-médias Bagging e K-médias Boosting tem o melhor desempenho nos conjuntos de dados. Por fim, considerando os resultados com dados sintéticos e reais, o k-médias Bagging é escolhido como o melhor método.