HYBRID DATA-DRIVEN MAINTENANCE POLICIES WITH SEQUENTIAL PATTERN MINING SUPPORT
manutenção, mineração de dados, políticas híbridas, mineração de padrões sequenciais, centro de usinagem
A gestão de Operações e Manutenção (O&M) em sistemas industriais evoluiu significativamente com os avanços tecnológicos, permitindo a coleta de dados em tempo real por meio de sensores embarcados. Essas inovações oferecem oportunidades para prever falhas e otimizar políticas de manutenção. No entanto, ainda existem desafios, especialmente na interpretação de dados de eventos discretos e na abordagem de questões como falsos negativos, indução de defeitos e impedimentos à manutenção. Esta pesquisa apresenta um framework inovador que integra a Mineração de Padrões Sequenciais (SPM) com metodologias de melhoria contínua, como Descoberta de Conhecimento em Bancos de Dados (KDD) e o ciclo Plan-Do-Check-Act (PDCA). O framework suporta o desenvolvimento de políticas híbridas de manutenção para sistemas industriais complexos, abordando tanto desafios operacionais quanto gerenciais. As principais contribuições incluem dois modelos inovadores adaptados a subsistemas distintos em um centro de usinagem: para o sistema de lubrificação, foi projetada uma política híbrida oportunística para mitigar interrupções frequentes e o desgaste de ferramentas causado por falhas de lubrificação, demonstrando reduções de custos e melhorias operacionais; para o subsistema do spindle, foi desenvolvida uma política híbrida de manutenção que incorpora um modelo de degradação em três estágios, impedimentos externos à manutenção e cenários de indução de defeitos, oferecendo uma solução abrangente para a otimização da manutenção. Este estudo avança o estado da arte ao integrar conceitos de manutenção anteriormente isolados em políticas híbridas coesas, apoiadas por análises numéricas que revelam uma otimização significativa de custos em comparação com métodos tradicionais. As contribuições práticas incluem a identificação de limites críticos de custos, diretrizes para a frequência de inspeções e estratégias para minimizar a indução de defeitos. Além disso, a pesquisa destaca os benefícios econômicos e ambientais da manutenção proativa, alinhando-se aos objetivos de sustentabilidade e responsabilidade social corporativa. Ao conectar inovações teóricas com aplicações práticas, esta tese fornece ferramentas robustas para melhorar a eficiência, confiabilidade e tomada de decisão na manutenção industrial.