Prognóstico de falhas em redutores de velocidade de turbinas eólicas utilizando técnicas de aprendizagem de máquina a partir de sinais de vibração
aerogerador; transmissão, manutenção baseada na condição, vida útil remanescente, modelagem, modelos de aprendizado de máquina, generalização, dados SCADA.
Este trabalho aborda a lacuna significativa no prognóstico de falhas em aerogeradores, especialmente offshore, propondo um framework inovador baseado em uma abordagem de complexidade crescente para garantir a generalização de modelos de aprendizagem de máquina. Utilizando dados sintéticos, benchmarks públicos e dados reais de temperatura do sistema SCADA de três turbinas no nordeste do Brasil, foram desenvolvidos modelos regressivos (support vector machine, gradient boosting, random forest e extra trees) para estimar a Vida Útil Remanescente (VUR) dos rolamentos principais. Os modelos apresentaram erros médios de 20 dias na estimativa da VUR, com MAE de 0,047, MSE de 0,012 e R2 Score de 0,625. O framework proposto para estimar a VUR com dados reais de operação tem potencial para impactar a cultura organizacional em relação às tecnologias de Inteligência Artificial Industrial, oferecendo estimativas conservadoras e assertivas para subsidiar o planejamento de manutenção, evitar falhas catastróficas e aumentar a disponibilidade das usinas. Esta metodologia preenche uma lacuna importante na manutenção preditiva de aerogeradores, apresentando uma solução robusta e adaptável com implicações significativas para a indústria de energia eólica.