Estimação assistida por modelos lineares generalizados em planos amostrais de cadastros múltiplos.
Estimador de multiplicidade, cadastrto de área, amostragem de área.
Esta tese considera o problema de estimação de parâmetros de populações finitas usando um estimador assistido por modelo linear generalizado (GEREG), quando a amostra é selecionada a partir de múltiplos cadastros sobrepostos. O GEREG considera a disponibilidade de variáveis auxiliares relacionadas à variável de interesse através de um modelo linear generalizado adequado. Nas situações em que a distribuição empírica da variável de interesse pode ser considerada como membro da família exponencial, espera-se que o GEREG apresente um melhor desempenho estatístico do que o estimador de regressão geral usual (GREG). Esta tese estende o GEREG para um plano amostral de cadastros múltiplos, utilizando a abordagem de estimação por multiplicidade. Sua forma geral, bem como propriedades estatísticas são introduzidas. É apresentado um estudo de Monte Carlo, comparando o GEREG com concorrentes, para estimar totais e proporções populacionais, considerando um plano amostral de múltiplos cadastros em pesquisa agrícola usando um cadastro de área de segmentos quadrados e dois cadastros de lista de produtores.