Decomposição com baixa profundidade de operadores multi-controlados
sobre um qubit
Circuitos Quânticos. Compilação Quântica. Portas Quânticas
Aproximadas. Portas Quânticas Multi-Controladas. Profundidade Logarítmica.
Neste trabalho, apresentamos uma estratégia para a decomposição aproximada
de ope-
radores quânticos multi-controlados aplicados a um qubit, com contribuições
que avançam o estado da arte em termos de profundidade do circuito e
contagem de portas CNOT. A
tese é fundamentada em dois artigos principais. No primeiro, propomos uma
decomposição aproximada sem qubits auxiliares que atinge profundidade
linear (proporcional a ∼ 64n) e um número de portas CNOT proporcional a ∼
32n, superando decomposições exatas e aproximadas anteriores. No segundo
artigo, introduzimos novas decomposições de portas Toffoli com profundidade
logarítmica: uma versão sem âncilas (utilizando fase relativa), uma com um
qubit auxiliar limpo e uma com dois qubits auxiliares. Aplicamos essas
portas Toffoli otimizadas para construir uma decomposição de operadores
SU(2) multi-controlados e multi-alvo (MCMT) sem qubits auxiliares, com
profundidade logarítmica e custo de CNOTs proporcional a ∼ 12n.
Por fim, integramos essa MCMT eficiente em nossa estrutura principal para
produzir uma decomposição aproximada do operador U(2) multi-controlado com
profundidade logarítmica e custo de CNOTs proporcional a ∼ 24n.
Experimentos computacionais validam
nossa abordagem, demonstrando uma redução significativa no uso de CNOTs em
comparação com os métodos existentes. Nossos resultados oferecem soluções
escaláveis e eficientes para a implementação de componentes essenciais de
algoritmos quânticos em dispositivos NISQ e futuras arquiteturas tolerantes
a falhas.