Banca de DEFESA: WILZA OLIVEIRA DOS SANTOS

Uma banca de DEFESA de MESTRADO foi cadastrada pelo programa.
DISCENTE: WILZA OLIVEIRA DOS SANTOS
DATA : 27/06/2024
HORA: 14:00
LOCAL: Remota
TÍTULO:

Estudo de Seleção de Atributos aplicado ao Reconhecimento de Emoções em Sinais Multimodais como Apoio à Musicoterapia


PALAVRAS-CHAVES:

Doença de Alzheimer, Computação Afetiva, Musicoterapia, Demência, Cognição, Inteligência Artificial, Eletroencefalografia.


PÁGINAS: 23
RESUMO:

O envelhecimento da população brasileira, impulsionado pela queda na taxa de natalidade e pelo aumento da expectativa de vida, traz consigo um aumento na prevalência de doenças como osteoporose, hipertensão e demências, especialmente a Doença de Alzheimer e a isquemia cerebrovascular. Nesse contexto, a musicoterapia surge como um potencial aliado no combate aos efeitos dessas doenças, demonstrando ser capaz de desacelerar o progresso das demências através de estímulos musicais e da educação musical. A interação do paciente com a música promove a estimulação de áreas cerebrais relacionadas à memória, utilizando as emoções como meio de ativação. No entanto, a efetividade da musicoterapia depende crucialmente da capacidade do terapeuta em reconhecer e estimular corretamente as emoções do paciente. Diante da necessidade de aprimorar a efetividade da musicoterapia, esta pesquisa propõe o desenvolvimento de uma interface musical cérebro-máquina (IMC-M) baseada em redes neurais artificiais profundas (RNA) e algoritmos evolutivos, com o objetivo de reconhecer as emoções do paciente a partir de sinais eletroencefalográficos (EEG) e da voz, permitindo a personalização dos estímulos musicais na musicoterapia em idosos. Esta dissertação de mestrado teve como objetivo geral desenvolver um modelo robusto para o reconhecimento de emoções em idosos, utilizando sinais de EEG e voz. Os resultados obtidos nesta pesquisa demonstram que o objetivo geral foi plenamente atingido. A base de dados coletada é uma das maiores e mais completas na área de reconhecimento de emoções em idosos até o momento, e o modelo desenvolvido apresentou um alto desempenho na classificação das emoções, com valores de acurácia superiores a 99%. A seleção de atributos utilizando PSO contribuiu para a redução da complexidade do modelo e para a melhoria do seu desempenho. O modelo desenvolvido nesta dissertação tem potencial para ser aplicado em diferentes contextos, como no cuidado com idosos, na interação homem-máquina e na pesquisa científica. O uso do modelo pode auxiliar na identificação de alterações de humor em idosos, na avaliação do impacto de intervenções terapêuticas e no desenvolvimento de interfaces mais intuitivas e personalizadas para interação com essa população. A implementação da IMC-M na musicoterapia em idosos tem o potencial de transformar o tratamento de pacientes com demências e outras doenças relacionadas à idade. Através do reconhecimento preciso das emoções do paciente, a IMC-M permite a personalização dos estímulos musicais, otimizando a efetividade da musicoterapia e promovendo uma experiência terapêutica mais individualizada e eficaz. Além disso, a pesquisa contribui para o avanço do conhecimento sobre as relações entre música, emoções e o cérebro humano em idosos, abrindo caminho para novas aplicações na musicoterapia e em outros domínios da saúde voltados para essa população.


MEMBROS DA BANCA:
Interno - 1807632 - WELLINGTON PINHEIRO DOS SANTOS
Externa ao Programa - 2727505 - GISELLE MACHADO MAGALHAES MORENO - UFPEExterna ao Programa - ***.618.664-** - JULIANA CARNEIRO GOMES - UFPE
Notícia cadastrada em: 25/06/2024 22:10
SIGAA | Superintendência de Tecnologia da Informação (STI-UFPE) - (81) 2126-7777 | Copyright © 2006-2025 - UFRN - sigaa04.ufpe.br.sigaa04