Referências: |
Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Jurafsky, D., & Martin, J. H. (2020). Speech and Language Processing. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Floridi, L., & Cowls, J. (2019). A Unified Framework of Five Principles for AI in Society. Harvard Data Science Review, 1(1). Diakopoulos, N. (2016). Accountability in Algorithmic Decision Making. Digital Journalism, 4(6), 700-708. Szeliski, R. (2010). Computer Vision: Algorithms and Applications. GINSBERG, M. , Essentials Of Artificial Intelligence . Morgan Kaufmann, 1994. RICH, E., KNIGHT, K. , Artificial Intelligence . McGraw-Hill, 2nd edition,1991. Rosa, J. L. G. Fundamentos da Inteligência Artificial, LTC, 2011. Luger, G. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison-Wesley Pub Co, 2008 Bittencourt, G. Inteligência artificial: ferramentas e teorias. 3.ed. Florianópolis: Editora da UFSC, 2006. Coelho, H. Inteligência artificial em 25 lições. Lisboa: Fundação Calouste Gulbenkian, 1995. Jones, M.T. Artificial Intelligence. Jones and Bartlett Publisher, 2009. Faceli, K.; Lorena, A.C.; Gama, J.; Carvalho, A.C.P.L.F. Inteligência Artificial: uma abordagem de aprendizado de máquina. LTC, 2011. Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, 2017. McKinney, W. Python para Análise de Dados: Tratamento com Pandas, NumPy e IPython, Novatec, 2020. C. Doersch. -Tutorial on Variational Autoencoders-, arXiv 1606.05908v2 [stat.ML], 2016. Artigos específicos. |